akrivisbio:线粒体DNA分离试剂盒简介

akrivisbio:线粒体DNA分离试剂盒简介

目录PI-0105

尺寸:50 Preparations

样本类型细胞和组织

检测类型定性的

应用从多种细胞和组织类型中分离完整的线粒体DNA,而不被基因组DNA污染。

贮藏条件-20摄氏度

船舶温度凝胶包装

保存限期自交付之日起一年

线粒体是存在于所有真核细胞中的膜结合细胞器。它们通常被称为细胞的动力室。它们的主要功能是产生各种细胞过程所需的ATP,包括代谢、生长和运动。线粒体功能障碍与线粒体疾病有关,包括肌无力、疲劳、代谢性中风、癫痫发作、心肌病、心律失常、发育或认知障碍、糖尿病等。线粒体DNA提取试剂盒为从各种细胞和组织类型中分离完整的线粒体DNA提供了一种简单、快速和可靠的工具,而不会受到基因组DNA的污染。回收的线粒体DNA与各种下游应用兼容,包括PCR、克隆等。

bellbrooklabs: DNA损伤反应介绍

bellbrooklabs: DNA损伤反应介绍

DNA损伤反应途径

DNA损伤反应检测由复制错误或外部因素引起的DNA损伤,并动员蛋白质进行修复。DNA损伤反应蛋白包括:

DNA-PK-感知双链断裂(DSB)

PARP1与DSBs结合并形成聚ADP核糖(PAR)

PARG-DNA修复后移除PAR

DSB修复中的POLQ – DNA修饰酶

WRN——DSB修复中的DNA修饰酶

DNA损伤反应过程中会发生什么? 在DNA损伤反应(DDR)途径中,发生了一系列信号事件,包括DNA损伤检测、细胞周期停滞以促进修复和DNA修复途径的激活(同源重组、非同源末端连接等)。).如果损伤不可修复,DNA损伤要么被修复,要么发生细胞凋亡。

某些DNA损伤反应蛋白负责检测DNA损伤和促进下游DNA修复机制。共济失调-毛细血管扩张症突变型(异步传输模式)在响应DNA双链断裂(DSBs)时激活,并磷酸化下游靶标以启动DNA损伤修复。依赖DNA的蛋白激酶(DNA-PK)也参与DNA DSBs的识别并启动修复机制。ATM和Rad3相关((同antitransmit-receive)反收发)在应对单链断裂和停滞的复制分叉时激活,在应对DNA复制压力中发挥重要作用。  各种传感器、信号和效应蛋白参与不同种类的DNA损伤。DNA中的单链断裂可以通过碱基切除修复(BER)、核苷酸切除修复(NER)或错配修复(MMR)来修复。双链断裂是最严重的DNA损伤类型,通常通过同源重组或非同源末端连接(NHEF)来修复。

DNA损伤反应蛋白

双链断裂(DSB)是一种严重的DNA损伤形式,它由各种来源引起,如电离辐射或化学物质。在识别出DSB后,DNA-PK通过非同源末端连接(NHEJ)与断裂末端结合并协调下游DNA损伤修复机制。对争端解决机构的承认DNA-PK也被证明能激活I型干扰素反应。DNA-PK其作用类似于模式识别受体(PRR),通过识别DSB然后触发或改变炎症反应。

DNA损伤反应和先天免疫

DDR途径和先天免疫途径之间存在广泛的相互影响。在这里,DNA损伤剂在肿瘤细胞核中诱导DDR。dsDNA在细胞质中由细胞核或微核泄漏的DNA形成。PRRs对dsDNA的检测伴随着先天免疫反应,诱导I型干扰素和促炎细胞因子。在细胞外,腺苷(ADO)和cGAMP调节先天免疫反应;两者的水平都由胞外核苷酸酶控制。

合成致命性和癌症治疗

合成致命性是指两个基因一起出现是致命的,但这些基因单独出现是不致命的。将合成致死策略用于抗癌药物治疗已经显示出巨大的前景:DDR基因缺陷的肿瘤可以通过靶向第二种DDR蛋白的药物被选择性杀死。的使用喇叭声卵巢肿瘤抑制剂BRCA一号突变是这种方法的第一个临床实例。最近,POLQ被发现在常见肿瘤中具有合成致死性BRCA和异步传输模式突变,为PARPi耐药肿瘤提供了一种替代治疗策略。

DNA损伤反应分析

DNA损伤反应分析在研究DNA损伤反应蛋白和开发具有巨大疾病治疗潜力的途径小分子调节剂方面发挥着至关重要的作用。在贝尔布鲁克,我们开发并商业化了现成的DDR蛋白检测方法,这将加快研究人员发现这些调节剂的努力。  我们专注于为难以获得酶或开发检测方法的更难对付的酶目标创建完整的检测解决方案,以便您可以专注于优化先导分子。我们还为那些不想在内部进行分析的人提供线索发现和分析开发服务。通过我们的服务,您将直接与我们的科学家合作,他们是DDR途径的专家。我们的服务提供快速的周转时间、定制的检测条件和丰富的专业知识。

bayoubiolabs pUC和M13 DNA简介

bayoubiolabs pUC和M13 DNA简介

用于分子生物学研究的质粒和噬菌体DNA

高度纯化:纯度适用于所有分子生物学应用。无RNA、蛋白质、核苷酸、核糖核酸酶和脱氧核糖核酸酶污染。pUC质粒实际上是纯的超螺旋形式,含有最少的切口质粒和染色体DNA污染。M13双链质粒被进一步纯化以去除所有残留的单链噬菌体DNA,这些DNA会干扰转化。  

折纸:M13mp18 ssDNA和M13mp19 ssDNA适用于DNA折纸应用。  

不贵:我们的M13mp18 ssDNA比New England Biolabs便宜15倍。我们的pUC19质粒比新英格兰生物实验室便宜8倍。  

提供:pUC质粒和M13 ssDNA以1.0微克/微升的浓度在TE缓冲液中提供。M13 dsDNA质粒以0.50微克/微升的浓度提供。  

散装数量:从100毫克到100克的大批量产品价格低廉。请联系我们了解价格和大批量供货情况。  

免费送货:在环境温度下通过一级航空邮件运送到。

目录        描述 

P-101pUC18质粒,1000微克 

P-102        pUC19质粒,1000微克 

P-103pUC118质粒,1000微克 

P-104pUC119质粒,1000微克 

P-105M13mp18质粒,100微克 

P-106M13mp19质粒,100微克 

P-107M13mp18单链噬菌体DNA,500微克 

P-108M13mp19单链噬菌体DNA,500微克 

P-109p8064单链噬菌体DNA,500微克

使用 LumiZol 试剂快速分离 RNA、DNA 和蛋白质

使用 LumiZol 试剂快速分离 RNA、DNA 和蛋白质

LumiZol Reagent 设计用于从各种来源(植物、动物、细菌和酵母)的细胞和组织样品中快速分离 RNA、DNA 和蛋白质。 LumiZol Reagent 是一种含有苯酚、异硫氰酸胍以及分离高质量核酸和蛋白质所需的其他成分的溶液。苯酚和异硫氰酸胍可裂解细胞并有效抑制核糖核酸酶,从而保持 RNA 完整。均质化并添加氯仿后,样品分离成上层水相、中间相和下层有机相。 RNA 可以用异丙醇从上相沉淀,而 DNA 和蛋白质可以分别用乙醇和异丙醇从中间相和下层有机相沉淀。

用于 RNA、DNA 和蛋白质分离的样品:

  • 植物和动物组织——30-100毫克;

  • 贴壁真核细胞 — 1×10 5至 1×10<sup7< sup=”” style=”box-sizing: border-box;”>;

  • 悬浮真核细胞、酵母 — 5×10 6至 10×10 6

  • 细菌细胞 — 1×10 7

RNA分离

使用新鲜或液氮速冻样品以获得最佳 RNA 分离效果。在 LumiZol 试剂中均质化之前,请勿解冻样品。

  1. 根据您的起始材料在 LumiZol 试剂中裂解样品:

    • 组织:在 1 mL LumiZol 试剂中匀浆组织样本,并将匀浆转移至新的 1.5 mL 管中。

    • 细胞:弃去培养基,用 0.5–1 mL LumiZol 试剂重悬细胞沉淀或单层细胞,然后将裂解物转移至新的 1.5 mL 试管中。

  2. (可选)如果样品脂肪含量高,则将裂解液在 4 °C 下以 12,000 × g 离心 5 分钟,然后将上清液转移至新的 1.5 mL 管中。

  3. 将管在室温下孵育 5 分钟。

  4. 向裂解液中添加 0.2 mL 氯仿(每 1 mL 用于裂解的 LumiZol 试剂),通过翻转管充分混合,并在室温下孵育 2 分钟。

  5. 将管在 4°C 下以 12,000 × g 离心 15 分钟。离心后,混合物分成两相:无色水相和黄色有机相,其间有中间相。

  6. 将上层水相转移至新的 1.5 mL 管中,不要接触间相。如果样品中RNA的量非常少,则在水相中添加共沉淀剂。保留有机相和界面用于 DNA 和蛋白质提取。

  7. 向水相中加入0.8体积的异丙醇,充分混合,并在室温下孵育10分钟。

  8. 将管在 4°C 下以 12,000 × g 离心 10 分钟。

  9. 弃去上清液,向 RNA 沉淀中加入 1 mL 70% 乙醇,充分混匀,并在 4 °C 下以 7,500 × g离心管 5 分钟。

  10. 弃去上清液,将 RNA 沉淀风干 5-10 分钟。

  11. 将 RNA 沉淀溶解在 50–100 μL 无 RNase 水中。

DNA分离

  1. 除去“RNA 分离”部分步骤 5 中获得的界面上的任何剩余水相。

  2. 向界面相和有机相中添加 0.3 mL 100% 乙醇(每 1 mL 《RNA 分离》步骤 1 中使用的 LumiZol 试剂),通过翻转管混合,并在室温下孵育 2-3 分钟。

  3. 将管在 4 °C 下以 2,000 × g 离心 5 分钟。将上清液转移至新的 1.5 mL 管中。上清液可用于后续的蛋白质提取。

  4. 将 DNA 沉淀重悬于 1 mL 柠檬酸钠/乙醇溶液(10% 乙醇中的 0.1 M 柠檬酸钠,pH 8.5)中。

  5. 孵育 30 分钟,偶尔混合。

  6. 将管在 4 °C 下以 2,000 × g 离心 5 分钟。丢弃上清液。

  7. 再重复一次步骤 4-6。

  8. 将 1 mL 70% 乙醇添加到 DNA 沉淀中,充分混匀,然后在 4 °C 下以 2,000 × g离心管 5 分钟。

  9. 弃去上清液,将 DNA 沉淀风干 5-10 分钟。

  10. 将 DNA 沉淀重悬于 0.3–0.6 mL 的 8 mM 氢氧化钠中。

  11. 将管在 4 °C 下以 12,000 × g 离心 10 分钟,将上清液转移至新的 1.5 mL 管中,并用 Tris-HCl 缓冲液将 pH 调节至 7–8 [添加 5 μL 1 M Tris-HCl 缓冲液(pH 4.5)至300μL DNA溶液]。

蛋白质分离

  1. 向《DNA 分离》部分第 3 步获得的上清液中添加 1.5 mL 异丙醇(每 1 mL 《RNA 分离》步骤 1 中使用的 LumiZol 试剂),通过翻转管充分混合,并孵育 10分钟在室温下。

  2. 将管在 4°C 下以 12,000 × g 离心 10 分钟。丢弃上清液。

  3. 将蛋白质沉淀重新悬浮在 2 mL 盐酸胍/乙醇溶液(0.3 M 盐酸胍于 95% 乙醇中)中。

  4. 将管在室温下孵育 20 分钟。

  5. 将管在 4 °C 下以 7,500 × g 离心 5 分钟。丢弃上清液。

  6. 再重复步骤 3-5 两次。

  7. 向蛋白沉淀中加入 2 mL 100% 乙醇,充分混匀,室温孵育 20 分钟。

  8. 将管在 4 °C 下以 7,500 × g 离心 5 分钟。丢弃上清液。

  9. 将蛋白质沉淀风干 5-10 分钟。

  10. 将蛋白质沉淀溶解在含有 SDS 的缓冲液中(例如,用于将蛋白质样品加载到聚丙烯酰胺凝胶上的样品缓冲液)。

使用 Pico488 进行 DNA 定量

使用 Pico488 进行 DNA 定量

Pico488 DNA 定量溶液是一种超灵敏试剂,用于在无法通过测量 260 nm 吸光度来确定双链 DNA 浓度时测量双链 DNA 浓度。 Pico488 选择性地结合双链 DNA,因此核苷酸、单链 DNA、RNA、蛋白质和其他杂质不会妨碍测量。与双链 DNA 结合的染料在 503 nm 处最大吸收光并在 525 nm 处最大发射光。为了检测测定读数,可以使用任何类型的荧光计或荧光板读数器。

Pico488 测量 DNA 浓度的线性范围为 1 pg/μL — 5 ng/μL。为了实现精确、可重复的荧光测量,我们建议在 TE 缓冲液(10 mM Tris-HCl,pH 7.5,1 mM EDTA)中稀释 DNA 和 Pico488。为了计算 DNA 浓度,我们建议首先使用一系列 DNA 标准稀释液建立校准曲线。

Lumprobe 销售各种包装的Pico488 DNA 定量溶液和Pico488 DNA 定量试剂盒。除了 Pico488 溶液之外,该试剂盒还包括缓冲液和 DNA 标准储备溶液。如果测定体积等于 2 ml,则试剂盒提供的染料溶液量足以分析标准荧光比色皿(体积 3.5 ml)中的 200 个实验数据点。如果使用其他类型的设备来检测荧光,则可以重新调整测定范围。下表提供了常用荧光设备的推荐检测体积。

协议

1. Pico488工作液的制备

解冻 Pico488 染料瓶中的内容物,充分混合,并用缓冲液将所需量的 Pico488 染料溶液稀释 200 倍(我们建议使用 10 mM Тris HCl、1 mM EDTA,pH 7.5)。混合并在3小时内使用。每个实验数据点的 Pico488 工作溶液体积应等于测定体积的 50%(查看下表以查找适合您的荧光测定设备类型的推荐体积)。为所有实验数据点(针对您计划分析的所有样品和所有 DNA 标准稀释液)准备足够的 Pico488 工作溶液。还包括额外 10-25% 的 Pico488 工作溶液体积,以排除可能的移液错误。要计算稀释后的 Pico448 的体积,可以使用以下公式:

Pico488 = 5/8 × V测定× (N 个样品+ N 个标准品), 其中 V测定是样品或标准品的测定体积,mL,N 个样品 是您计划分析的样品数量,N 个标准品是您计划分析的标准品数量(包括空白样品)。

2. 样品溶液的制备

在缓冲液中稀释 DNA 样本,使溶液体积等于测定体积的 50%(您可以使用任意量的 DNA)。添加等体积的 Pico488 工作溶液。混合并孵育 5 分钟。同样,制备 DNA 标准品的稀释液。请注意,DNA 标准品的稀释度应在样品中 DNA 浓度的范围内。 DNA 标准储备液仅随Pico488 DNA 定量试剂盒提供Pico488 DNA 定量解决方案的用户 应使用自己的 DNA 标准品。

使用Pico488 DNA 定量溶液进行 DNA 定量的推荐体积

设备类型 测定体积 稀释后的 Pico488 体积 稀释 DNA 体积
标准荧光比色皿(3.5 ml) 2毫升 1毫升 1毫升
其他荧光比色皿 约比色皿体积的 75% 比色皿体积的 37.5% 比色皿体积的 37.5%
96 孔板*,每孔 0.2毫升 0.1毫升 0.1毫升
24 孔板,每孔 1毫升 0.5毫升 0.5毫升
其他板材 约占井容积的75% 井体积的37.5% 井体积的37.5%
NanoDrop™ 3300* 0.1毫升 0.05毫升 0.05毫升

* 为了保持测量的准确性和精密度,我们建议避免移液量低于 2 µL。

3. 荧光测量

使用适当的吸收和发射波长或滤光片测量标准和样品 DNA 溶液的荧光(双链 DNA 结合的 Pico488 染料吸收最大波长为 503 nm 的光,发射最大波长为 525 nm 的光)。

4. DNA浓度的计算

绘制荧光 浓度的关系图,并在任何软件中应用线性回归函数,以获得反映荧光 ( FL ) 与浓度 ( C ) 依赖性的线性方程:
FL = A × C + B。

要计算稀释样品中的 DNA 浓度,请使用以下公式:
C样品= (FL样品 — B)/A,其中FL样品是样品溶液荧光。

要计算未稀释样品中的 DNA 浓度,请使用以下公式:
С init = V Assay × C Sample  / V init,其中 Assay是测定体积(mL),init是初始 DNA 样品的体积(μL)

或者,您可以使用我们的dsDNA 定量稀释 计算器完成所有必要的计算。

线性回归示例:荧光与 DNA 浓度 

使用 Pico488 进行 DNA 定量