BSA,Low Endotoxin牛血清白蛋白(低内毒素)

BSA,Low Endotoxin牛血清白蛋白(低内毒素)

货号: MP6102-5G 品牌: Jinpan 标签: 蛋白研究

描述

BSA, Low Endotoxin 牛血清白蛋白(低内毒素)

产品标签

BSA 牛血清白蛋白;carrier protein 载体蛋白;enzyme stabilizer 酶稳定剂;blocking agent 封闭剂;Cohn Fraction V 第五组分;低内毒素BSA;无脂肪酸BSA;无蛋白酶BSA; CAS NO:9048-46-8;

产品信息

货号 产品名称 规格                价格(元)   
MP6102-5G BSA, Low Endotoxin 牛血清白蛋白(低内毒素)     5g 205
MP6102-25G BSA, Low Endotoxin 牛血清白蛋白(低内毒素) 25g 650
MP6102-100G BSA, Low Endotoxin 牛血清白蛋白(低内毒素) 100g 1800
MP6102-500G        BSA, Low Endotoxin 牛血清白蛋白(低内毒素) 500g 7200
MP6102-1000G BSA, Low Endotoxin 牛血清白蛋白(低内毒素) 1kg 13000

产品描述

牛血清白蛋白(Bovine Serum Albumin,BSA),也称为第五组分(Cohn Fraction V),CAS NO. 9048-46-8,具有非常广泛的生物学和诊断学研究用途。免疫实验中可用作封闭剂,功能类似脱脂奶粉,动物正常血清。也可用作载体蛋白,将其交联于半抗原和其他弱抗原上,以提高抗体生产的免疫原性。酶和重组蛋白生产制品中加入BSA,不仅可以提高稳定性,延长保存周期;还能防止制品黏附到管壁或其他材料表面造成的损失。也常用于生物制药的加工过程,或者作为营养成分加入细胞和微生物培养体系中。还能用作蛋白定量检测所需的定量标准品。

本司提供的BSA,来源于经过严格检疫控制的牛血浆,使用热休克法制备所得。提供不同级别的BSA,包括标准级别、低内毒素、无脂肪酸、无蛋白酶等级别,满足各种科研应用。

本品为低内毒素级别的BSA(BSA, Low Endotoxin),用在内毒素水平要求比较严格的细胞培养中脂肪酸、微量元素和生长因子的天然载体蛋白。特别适合用于无血清和化学限定细胞和组织培养中营养成分的载体。用于稳定和稀释敏感蛋白溶液的有用试剂,以及适用于比如ELISA的诊断实验。本品来源于新西兰产地,无疫疾污染,放心安全使用。

产品参数

同义名:BSA, bovine serum albumin, bovine plasma albumin;牛血清白蛋白;牛血浆白蛋白;第五组分; 
CAS NO.:9048-46-8 分子量:~66kDa
总蛋白(干重):≥98% 纯度(白蛋白):≥99%(琼脂糖凝胶)
含水量:≤5.0% 重金属(Pb):≤10ppm
pH(10% H2O):6.5-7.5 内毒素:≤ 2 EU/mg
外观:白色至黄色带褐色至绿色光泽的冻干粉 IgG:未检测到
溶解性:易溶于水(用去离子水溶解高达30%的溶液呈澄清至微浑浊,基本无不溶颗粒)
支原体:未检测到 BVD病毒:未检测到

保存与运输方法

保存:2-8℃密封干燥保存,至少3年有效。

运输:室温运输。

注意事项

为了您的安全和健康,请穿实验服并戴一次性手套操作。

相关产品

货号 产品名称 规格              价格(元)   
MP6101-5G BSA, Standard Grade牛血清白蛋白(标准级别) 5g 80
MP6102-5G BSA, Low Endotoxin 牛血清白蛋白(低内毒素) 5g 205
MP6103-5G BSA, Fatty Acid  Free牛血清白蛋白(无脂肪酸) 5g 250
MP6104-5G BSA, Protease Free牛血清白蛋白(无蛋白酶) 5g 220
MP6105-5G BSA, DNase, Protease, IgG Free牛血清白蛋白(无DNase、蛋白酶、IgG)   5g 245
MP6106-5G      BSA, Diagnostic Grade牛血清白蛋白(诊断级别) 5g 215
MP6107-1ML BSA, Acetylated, Molecular Biology Grade

乙酰化牛血清白蛋白(分子生物学级别)

1ml (20mg) 956
MP6113-1MG BSA, Acetylated乙酰化牛血清白蛋白(对照级别) 1mg 840

 

 

 

 

规格信息

品牌:

Jinpan

CAS:

9048-46-8

规格:

5g

货期:

咨询客服

内毒素污染对基因治疗和细胞治疗的影响


内毒素污染对基因治疗和细胞治疗的影响

内毒素污染对基因治疗和细胞治疗的影响



基因疗法正在彻底改变我们治疗人类疾病的方式。任何通过修改个人基因来治疗或治愈疾病的技术都被认为是基因疗法的形式之一。这些技术可以通过几种潜在的机理实现。一个基因的致病之处可能被灭活,或被健康的版本所取代,又或者是引进一个新的基因来对抗一种疾病。基因治疗产品是通过将遗传物质引入细胞核而发挥作用的。为了引入遗传物质,科学家需要一个可将基因、核酸酶或短发夹RNA(shRNA)运送到人体细胞核的运输系统。携带这种遗传物质的运输工具被称为载体1

应用于基因治疗的载体多种多样,可分为病毒型和非病毒型。病毒载体是目前美国食品和药物管理局(FDA)批准的基因疗法中使用的载体,而非病毒技术作为一种安全有效地将遗传物质运送给细胞以达到治疗效果的方法正在研究当中1。但与非病毒载体相比,病毒载体的基因转移效率高10倍至1000倍。然而我们应该意识到,基于非病毒载体的基因疗法安全水平高且生产成本低,具有非常高的吸引力,在未来的药物开发中具有很大的潜力5


目前最常见的两种载体是质粒和病毒。质粒是细胞内的一种小型染色体外DNA分子,与染色体DNA物理分离,可以独立复制。最常以小型环状双链DNA分子的形式出现在细菌中,但有时也会出现在古细菌和真核生物中。在自然界中发现的质粒,往往携带着有利于生物体生存的基因,并能提供独特的优势,例如对抗生素的强烈抗性。染色体很大,并且含有在“正常条件“下生活的全部基本遗传信息,而质粒通常很小,只含有在某些压力、逆境或疾病状态下才可能发挥作用的额外基因2。另一方面,由病毒载体包装的基因可以整合到宿主细胞的基因组中并永久表达。一些类型的病毒可将其基因组插入宿主的细胞质中,但实际上并没有进入细胞,而另一些病毒会伪装成可穿透细胞膜的蛋白分子,进而很容易地进入细胞。可能发生的病毒性感染主要有两种类型,一种被称为裂解性感染,另一种为溶源性感染。裂解循环的病毒在插入其DNA后不久就迅速产生更多的病毒,随后从细胞中迸发出来,继续感染越来越多的细胞。溶源性病毒则是将其DNA整合至宿主细胞的DNA后,在对某个触发因素作出反应前可在体内存活多年。病毒会像细胞一样繁殖,并且不会对所依赖的宿主造成任何伤害,直至被某种方式触发。一旦被触发,病毒就会从宿主的DNA中释放出来,以此创造新的病毒3


最早应用于基因治疗的病毒载体是以腺病毒为基础的,腺病毒会引起普通感冒以及人类呼吸道、肠道和眼部感染1。腺病毒以双链DNA的形式携带遗传物质。当进入宿主细胞时,这种遗传物质可短暂存在于细胞核中,因此能够像其他基因一样自由进行转录。并且,人们发现腺病毒会在患者体内引发强烈的、具有潜在危险的免疫反应,因此,使用该类型病毒进行基因治疗的研究仍在继续3。逆转录病毒、单纯疱疹病毒等其他病毒载体也已被使用。


基因治疗产品与所有人体治疗药物一样,关键在于不受内毒素污染。内毒素,也被称为脂多糖(lipopolysaccharide)或LPS,是革兰氏阴性细菌外细胞膜的一种成分。作为一种极强的热原,微量接触也会导致危险的发烧甚至败血症。此外,内毒素具有高度的耐热性,很难通过传统的方法来清除。


根据FDA管理指南,所有静脉注射药品的内毒素含量必须低于5 EU每公斤体重。但内毒素普遍存在于环境,实验室也不例外,因此,基因治疗产品在用于人体测试前进行内毒素污染测试是至关重要的。


2019年发表于《Molecular Therapy – Methods & Clinical Development 》的一篇论文测试了一种从重组腺相关病毒(rAAV,一种常见的基因治疗载体)原液中去除内毒素污染的新方法。大肠杆菌通常是内毒素污染的来源,rAAV便是由大肠杆菌中分离出来的质粒DNA制备而来。8


该作者使用LAL(美洲鲎试剂)检测法来定量内毒素水平。清除rAAV原液的挑战之一是任何残留的洗涤剂都会引起毒性,还会干扰LAL检测试剂,从而导致假阴性。其原因在于掩蔽效应,即脂多糖分子被洗涤剂分子包围,无法与LAL试剂相互作用。因此,作者将洗净原液中的洗涤剂水平保持在临界值以下,以便于使用LAL精准地检测内毒素。8


这项研究强调了彻底净化基因治疗产品的重要性,以及为了去除残留的洗涤剂而进行严格的交换缓冲液冲洗的必要性。随着基因治疗的普及,科学家们仍须意识到内毒素污染潜在危险的重要性,以及需要避免由于洗涤剂残留而造成假阴性结果。8


内毒素污染对基因治疗和细胞治疗的影响

与基于基因疗法的治疗方法一样,细胞治疗产品也需要考虑可能受到污染的问题。细胞治疗产品包括细胞免疫疗法、癌症疫苗和应用于某些治疗适应症的其他类型自体或异体细胞,如造血干细胞和成人及胚胎干细胞。基因治疗是通过蛋白载体或载体将遗传物质转移到合适的细胞中,而细胞治疗是将具有相关和必要功能的细胞转移到患者体内。4,6


 在实验室环境中培养任何一种类型的细胞时,所面临的首要问题始终是避免污染。生物污染往往是工作的重点,同时也是最容易检测和避免的。


例如,大多数细菌或真菌污染在细胞培养基中肉眼可见,并可以使用抗生素处理来预防。而支原体或其他细胞系等其他生物污染物则更难检出,但仍可通过市面上的检测试剂盒进行检测。


 化学污染与生物污染相比,受到的关注相对较少,并且更难检测和避免。其中,最隐蔽的化学污染物就是内毒素。潜在的内毒素污染源包括水、细胞培养基、血清、玻璃制品和塑料制品。正如本文在基因治疗产品部分中所提及,细胞治疗中发现的内毒素对高压灭菌和辐照都有很强的耐受力,这意味着它们可以在没有活细菌的情况下存在。其高疏水性也使其对塑料制品具有很强的亲和力,而且内毒素与活细菌不同,在细胞培养基无法通过肉眼确认。此外,内毒素不能用抗生素去除,需要使用专门的内毒素清除溶液。


采取措施避免内毒素引起的细胞培养问题,可以使研究人员对实验结果更有信心。为了帮助保持细胞培养物及其产生的疗法不受内毒素的污染,人们已提出了多种解决方法。其中,包括使用高纯度的水和低内毒素的FBS,以及使用经认证为无内毒素的塑料器皿。7 然而,除了使用纯化的原材料和试剂外,建立强大的无菌技术和灭菌程序,对减少内毒素污染的几率而言也非常重要。


无菌技术是每一位生物研究人员必备的核心技能之一。为避免出现实验伪像和潜在的细胞死亡,有必要防止细胞培养物的污染。此外,动物研究中的污染也可能导致感染或死亡。


大多数生物污染物可以使用漂白剂或乙醇等标准的消毒试剂来避免,但内毒素高度稳定,在没有活菌的情况下也能继续存在。因此,对于质控技术人员来说,保持严格的无菌技术标准操作程序至关重要。


定期更换手套是内毒素相关无菌技术的示例之一。没有经验的细胞培养技术员可能认为经常用乙醇喷洒手套就足以保持无菌状态,但乙醇可能会带来内毒素污染,因此,应为使用者制定更换手套的频率标准。


内毒素污染对基因治疗和细胞治疗的影响

内毒素污染会极大地影响体外实验,特别是涉及免疫细胞的实验。巨噬细胞对内毒素的反应表现为IL-6分泌增加,而T细胞的表现为增殖和淋巴因子的产生增加。


受到内毒素的影响,非免疫细胞也可能会失调。传统上认为内毒素是通过CD14受体起作用的,但缺乏这种受体的细胞仍可对内毒素污染表现出强烈的反应。例如,一项研究报告指出,心肌细胞在暴露于内毒素时,会出现收缩功能障碍。其他研究也报告了CHO细胞内蛋白产生的改变以及输尿管上皮细胞中克隆效率的改变。


此外,不同的细胞系对内毒素污染的灵敏程度差异巨大。一些细胞系在内毒素低于1 ng/mL的情况下即表现失调,而其他细胞系则需要高达5000 ng/mL的浓度。也有理论认为,在培养中生长多年的细胞系(如HeLa和CHO细胞)可能随着时间的推移被自然选择为耐内毒素。基于这一点,很难确定一个广泛适用的内毒素污染安全阈值。


进行细胞培养时,购买低含量内毒素产品是至关重要的。然而,内毒素污染可能在打开试剂后产生,或在玻璃器皿/塑料器皿中转移污染,因此定期进行内毒素检测显得十分重要。


对于基因治疗和细胞治疗产品来说,鲎试剂(LAL)检测法为量化内毒素水平提供了一个兼具成本效益和高灵敏度的选择。本检测法依赖于从鲎血液中提取的蛋白,这些蛋白在内毒素存在的情况下发生凝结反应,可以对其定量以获取高度准确的内毒素水平读数。在维护我们的基因和细胞治疗的安全性方面,特别是应用于大规模生产以及重要的体外实验时,这种检测方法将会继续发挥关键作用。



◆相关产品

点击此处查看相关产品:内毒素检测系统Toxinometer® ET-7000

点击此处查看相关产品:PYROSTAR™ ES-F 系列鲎试剂

◆参考文献


1. 

‘How Does Gene Therapy Work?’ (2020 June). Genehome. Available at URL: https://www. thegenehome.com/how-does-gene-therapywork/vectors?gclid=Cj߿KCQjwkZiFBhD9ARIsA GxFX8C5ࠂpUEumd-W8ࠁHmYSL_5gBGNPtMMD rR_882PILGN_0n9vF8icjPboaAjA-EALw_wcB

 

2. 

‘Plasmid’. (2021 May 6). Wikipedia. Available at https://en.wikipedia.org/wiki/Plasmid

 

3.

‘Vectors in Gene Therapy’. (2020 December 16). Wikipedia. Available at URL: https:// en.wikipedia.org/wiki/Vectors_in_gene_ therapy


4.

‘Cellular and Gene Therapy Products’. (2021 March 2). U.S. Food and Drug Administration. Available at URL:https://www.fda.gov/vaccines-blood-biologics/cellular-genetherapy-products#:~:text=Cellular%20therapy%20products%20include%20cellular,adult%20and%20embryonic%20 stem%20cells 

5.

 Lundstrom, K. (2019). “Gene Therapy Today and Tomorrow”. National Center for Biotechnology Information, ‘Diseases’. Published online 2019 April 28. Available at URL: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC6631424/


6.

David, A., Professor. “How Cell Therapy differs from Gene Therapy”. Future Learn. Available at URL: https://www.futurelearn. com/info/courses/making-babies/0/ steps/23934#:~:text=Whereas%20gene%20 therapy%20involves%20the,appropriate%20 cells%20of%20the%20body.

 

7.

Easthope, E. (2020). “Five Easy Ways to Keep Your Cell Cultures Endotoxin-Free”. Biocompare, published online 2020 April 20. Available at URL: https://www.biocompare. com/Bench-Tips/563017-Five-Easy-Ways-toKeep-Your-Cell-Cultures-Endotoxin-Free/


8.

‘Removal of Endotoxin from rAAV Samples Using a Simple Detergent-Based Protocol’. (2019 December 13). Molecular TherapyMethods & Clinical Development, published online 2019 September 6. Available at URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6804492/

 内毒素污染对基因治疗和细胞治疗的影响  Lisa Komski

Lisa Komski是FUJIFILM Wako Chemicals U.S.A. Corporation LAL部门的销售总经理。在化学和生命科学行业拥有近30年的职业生涯,是美国食品和药物管理局(FDA)要求和cGMP方面的业务发展专业人士。Lisa拥有生物学和医学技术学位。


  Email:lisa.komski@fujifilm.com

※ 本页面产品仅供研究用,研究以外不可使用。


由凝胶到动态检测的转变


由凝胶到动态检测的转变

由凝胶到动态检测的转变

内毒素检测的意义

内毒素在环境中无处不在,主要在细菌裂解过程中由革兰氏阴性菌的外膜释放。若细菌内毒素通过肠胃外途径进入人体,可能会导致发生炎症、感染性休克、出血甚至死亡1。此外,在研究应用中,内毒素污染会导致结果不可靠并有可能产生误导性的解释。因此,内毒素检测已成为注射药物和医疗器械开发及质量控制的重要组成部分。


 


◆鲎试剂(LAL)检测作为内毒素检测法的首选

目前已研发出多种内毒素检测方法。其中,鲎试剂检测法被确立为内毒素检测的金标准试验2,3。LAL检测依赖于从鲎血液中提取的蛋白与样品孵育、反应从而分析内毒素含量。如果所测样品含有内毒素,LAL中的促凝血酶会与其发生相互作用,导致凝血级联反应的激活、变形细胞凝血原的修饰以及凝胶的形成。这被称为凝胶法或凝胶技术。对形成的凝胶进行可视化和定性评估。虽然凝胶技术灵敏且方便,但无法进行内毒素定量和高通量分析。因此,另外研发了定量LAL检测法。

◆动态鲎试剂检测的发展及优势

动态LAL检测具有显著优势,其可在广泛的浓度范围内定量内毒素含量并实现自动化分析,减少与用户有关的检测差异。内毒素定量可通过浊度(浊度LAL检测法)或反应混合物的颜色变化(显色LAL检测法)进行评估。浊度和显色LAL检测法均可用作动态和终点检测。


定量浊度LAL检测法

定量浊度LAL检测法可评估酶底物裂解后及凝胶形成前发生的浊度(浑浊)形成。使用分光光度计或酶标仪对浊度进行定量。定量浊度LAL检测法可靠、灵敏且能够与高通量分析兼容。


定量显色LAL检测法

显色LAL检测法依赖于显色底物的裂解,从而导致发色团的释放。然后,使用光度法对显色反应进行可视化和定量。 定量显色LAL检测法灵敏度高,可实现自动内毒素测量和高通量分析。


基于重组C因子的定量分析

另外还研发了可应用于内毒素定量检测的基于重组C因子检测法。所使用的重组C因子,是由内毒素诱导的鲎凝血级联反应的初始成分4

◆转为动态LAL检测的注意事项

LAL检测已被广泛接受为内毒素检测的标准测试2,3。尽管LAL检测的所有变化都是灵敏、可靠的,但定量LAL检测和基于重组因子C的检测法,由于可提供定量和高通量内毒素的检测而越来越受欢迎。为内毒素检测选择合适的定量分析方法时5,应综合考虑分析样品的性质和特点、可用设备以及可能相关的法规要求等多种因素。

文献来源

  1. Sampath VP. Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. Agriculture and Natural Resources 2018;52:115–120. https://doi.org/10.1016/j.anres.2018.08.002.

  2. Wheeler, A. Comparing endotoxin detection methods. Pharmaceutical Technology 2017;41:58–62.

  3. Mehmood, Y. What Is Limulus amebocyte lysate (LAL) and its applicability in endotoxin quantification of pharma products. Growing and Handling of Bacterial Cultures. IntechOpen 2019. Doi: 10.5772/intechopen.81331.

  4. Suvarna, K. Endotoxin detection methods – Where are we now?American Pharmaceutical Review. 2015, August 25.

  5. Wong J, Davies N, Jeraj H, Vilar E, Viljoen A, Farrington K. A comparative study of blood endotoxin detection in haemodialysis patients. Journal of Inflammation (London) 2016;13:24. doi: 10.1186/s12950-016-0132-5.

利用重组鲎试剂进行内毒素检测


利用重组鲎试剂进行内毒素检测

利用重组鲎试剂进行内毒素检测

富士胶片株式会社 生命科学&工程研究所

福地 大树

◆前言

内毒素是存在于革兰氏阴性菌细胞壁外膜的脂多糖(Lipopolysaccharide),进入血液后,只需极少量即可引发出发热症状,大量存在则表现出强毒性,可导致内毒素休克甚至死亡1)。由于革兰氏阴性菌广泛分布于环境中,存在混入生产过程的风险,而混入的内毒素具有耐热性,不易灭活,因此要求注射剂和医疗器械接受严密的内毒素污染管理。近年备受关注的再生医疗、疫苗、抗体和核酸医药相关的产品,内毒素管理对这类产品而言非常重要。

目前检测主流是使用一种利用了马蹄蟹血细胞提取物成分凝血系统的试剂——鲎试剂,来检测内毒素,但为了保护鲎科、稳定供应鲎试剂、减少产品批间差异、提高检测稳定性,各鲎试剂厂家开始促进使用人工原料生产的重组蛋白来研发内毒素检测试剂。

 


内毒素检查法的检测原理

       内毒素检查法是使用从马蹄蟹血细胞成分制备得到的裂解试剂进行内毒素检测或定量的方法。马蹄蟹的血细胞提取物成分具有使内毒素凝固的反应体系,这种凝固反应以多个丝氨酸蛋白酶前体依次活化的级联反应为基础(图1)。

       内毒素激活马蹄蟹血细胞提取物中含有的C因子,随后活化C因子激活B因子。活化B因子再激活凝血酶原,激活的凝血酶将凝血蛋白原底物水解,并将其转化为凝固蛋白,生成不溶性凝胶。

       另外,在马蹄蟹血细胞提取物中,级联反应还会以G因子为起点,与β-葡聚糖发生反应,由β-葡聚糖引起凝血反应(图1)。若想要特异性检测内毒素,需要通过去除G因子或抑制以G因子为起点的级联反应来检测。

利用重组鲎试剂进行内毒素检测

图1. 由内毒素、β-葡聚糖引起的凝血级联反应

内毒素的检测方法

内毒素检测大致可分为以下3种:凝胶法(以裂解物试剂的凝胶形成作为指标)、浊度法(检测伴随凝胶化变化的吸光度或透射率来测定浊度变化)、显色法(以合成底物水解产生的显色作为指标)。显色法比凝胶法、浊度法的灵敏度要高。利用重组蛋白的内毒素检测试剂中,除了使用显色合成底物的显色法之外,还有荧光合成底物的检测方法。

 


利用重组蛋白的内毒素检测试剂

       目前各公司销售的重组蛋白内毒素检测试剂可分为两种,使用C因子重组蛋白的单因子鲎试剂和使用C因子、B因子、凝血酶原重组蛋白的三因子鲎试剂(图2)。

       单因子试剂由于级联反应没有放大,产生的蛋白酶活性小,需要使用荧光底物进行荧光检测。三因子体系试剂与单因子体系试剂相比,酶活性较大,可产生显色反应,因此可以用普通的酶标仪来检测。

       另外,近年有报告称,B因子对内毒素的特异性具有重要作用2,3),相比只含有C因子的单因子鲎试剂,含C因子、B因子和凝血酶原三因子鲎试剂。富士胶片和光一直致力于研发三因子重组鲎试剂,目前最新推出的使用重组蛋白的重组鲎试剂(PYROSTAR™ Neo),有着良好的检测性能。

利用重组鲎试剂进行内毒素检测

图2. 利用重组蛋白的内毒素检测试剂种类

PYROSTAR™ Neo

本次富士胶片和光发售的重组鲎试剂PYROSTAR™ Neo,具有以下的特点:对空白值进行了控制,空白值更低,因此可检测到更低的内毒素浓度(表1)。另外,使用显色法进行检测是裂解试剂的常规分析方法之一,重组鲎试剂PYROSTAR™ Neo检测和分析时可使用能够进行动力学测定的恒温酶标仪和软件进行读数。PYROSTAR™ Neo可以定量0.001 EU/mL~50 EU/mL范围内的内毒素浓度,并能够获得线性良好的标准曲线(相关系数在0.980以上)。

 

表1. PYROSTAR™ Neo与其他公司产品的比较

PYROSTAR™ Neo

其他公司产品1

其他公司产品2

其他公司产品3

因子

三因子系统

单因子系统

定量范围

(EU/mL)

0.001~50
    (显色时间分析法)

0.005~50
(显色时间分析法)
0.002~0.1
(反应速度法)

0.005~5

0.005~50

检测方法

显色法

显色法

荧光法

荧光法

结语

目前内毒素检测试剂多为以鲎血为原料的裂解液鲎试剂,而使用人工重组蛋白的内毒素检测试剂,其历史较短,并未得到广泛应用。

在此背景下,为推进重组鲎试剂的应用,2021年欧洲药典收录了采用荧光法的重组C因子鲎试剂并作为常规检测方法。在日本药典第十八次修订的最新版本中,收录了《内毒素检测方法与使用重组鲎试剂的替代法》(「エンドトキシン試験法と測定試薬に遺伝子組換えタンパク質を用いる代替法」)作为补充参考信息,但重组鲎试剂并不属于内毒素检查法中规定的“马蹄蟹血细胞提取物成分制备的裂解试剂”。同样,美国药典也将重组鲎试剂视为替代法。据报告,使用替代法时,相比使用裂解试剂的内毒素检查法,需要对这两种方法进行对比研究,确保重组鲎试剂有相同或更高水平的真实性、准确度、灵敏度、特异性等 4)

今后富士胶片和光将会继续推进重组鲎试剂应用于内毒素检测中的研究,但需满足真实性、准确度、灵敏度、特异性这几点才能满足考虑替代法的制药公司等用户的需求。我们将继续推进鲎试剂的研究,努力实现用户需求、环境和马蹄蟹保护之间的平衡。

参考文献

1)棚元憲一:エンドトキシンと医薬品の品質管理,国立医薬品食品衛生研究所報告,126,19(2008).

2)Kobayashi, Y. et al. : J. Biol. Chem., 290, 19379 (2015).

3)Tsuchiya, M. : Int. J. Dev. Res., 10, 36751 (2020).

4)菊池裕 他:医薬品医療機器レギュラトリーサイエンス,48,252(2017).

相关产品

内毒素检测重组鲎试剂 PYROSTAR™ Neo