隐身型RNA载体的研发及其在新一代细胞重编程技术中的应用


隐身型RNA载体的研发及其在新一代细胞重编程技术中的应用

隐身型RNA载体的研发及其在新一代细胞重编程技术中的应用

常磐生物株式会社

中西真人

◆前言

      

通过导入基因实现的细胞重编程始于MyoD基因的发现,该基因可以将小鼠成纤维细胞(构成真皮等结缔组织的细胞)转化为肌肉细胞1)。然而,尽管许多研究人员辛勤耕耘,除了MyoD基因之外,并没有发现其他可以单独改变细胞特性的“主基因”。

2006年山中教授等人的研究表明,通过导入OCT4、SOX2、KLF4和c-MYC四种基因,可以把组成外周组织的细胞重编程为人工诱导性多能干细胞(iPS细胞)2)。这一发现有力地表明了需要组合多种因子来诱导细胞重编程,为再生医学领域带来了重大转机。目前还有多份研究报告了通过组合多种因子从而使体细胞不经由iPS细胞,直接转化为其他体细胞的直接重编程(Direct reprogramming),以及通过强制表达外源基因来诱导iPS细胞分化的定向分化(Directed differentiation)也都成为了可能。

若要将通过细胞重编程制备的细胞应用于再生医学,需使用高性能的基因导入/表达载体。若要均等地诱导重编程,必须将多个基因高效导入细胞,以一定比例稳定表达1~3周后将其从细胞中完全去除,但是能够满足这些要求的技术有限。本文将阐述目前被认为适用于细胞重编程技术的隐身型RNA载体的研发背景及应用现状。

◆使用RNA病毒的基因导入/表达载体

随着1973年磷酸钙转染法的发现,将基因导入动物细胞的方法开始作为一种实用方法逐步应用于研究领域。此后,在1980年代又开发出了至今仍被广泛使用的逆转录病毒载体、腺病毒载体、腺相关病毒(AAV)载体等重组病毒载体,以及使用正电荷脂质和DNA复合物的脂质转染法(Lipofection)等非病毒载体的基因转染法,由此提升了人们对基因治疗的期待。

另一方面,没有DNA复制中间体的RNA病毒通常具有很强的细胞毒性,因此被认为不适合作为基因导入载体(逆转录病毒和慢病毒虽然也属于RNA病毒,但与其他RNA病毒的不同之处在于其RNA通过逆转录产生的基因组cDNA会先被插入宿主的基因组DNA中再进行转录)。例如,以仙台病毒(RNA病毒的一种)为基础的载体,可以非常强烈地诱导基因表达,但由于其细胞毒性,它并不适合长期持续的表达。

笔者历经30多年,研发出一种无需将基因插入动物细胞基因组DNA即可实现持续性基因表达的RNA载体。仙台病毒中存在一种可在37°C下引起持续感染的突变株,称为Clone 151(cl.151)株3,4)。笔者着眼于这种突变病毒,与分离出cl.151毒株的吉田哲也博士(现任广岛大学名誉教授)从1988年开始共同研究此毒株。当时,PCR法和DNA测序仪还没有普及,对具有约16 kb大基因组的仙台病毒变异株的研究寸步难行,于2007年报告分离了cl.151毒株全长基因组cDNA并分析了持续感染的机制5),并于2011年成功研发出SeVdp(缺陷型和持久型仙台病毒,Defective and persistent Sendai virus)载体,该载体缺乏自主复制能力,同时可搭载4个外源基因并稳定表达6)

研究还发现,如果将OCT4、SOX2、KLF4和c-MYC基因全部搭载至SeVdp载体,可高效重编程细胞,由此成功确立了使用持续表达型RNA病毒载体进行细胞重编程的原理。此外,还导入了一种在iPS细胞中特异性表达的miR-302自动清除载体基因组RNA的机制7),并在大量的实验室中应用于iPS细胞系的构建。

◆隐身型RNA载体的研发

通过对SeVdp载体的研究,揭示了使用RNA基因组实现稳定基因表达的必要条件。重要的是要避免干扰素诱导,在cl.151毒株中,编码RNA聚合酶的L基因突变会降低干扰素的诱导,与细胞毒性的降低有关5)。此外还发现,若编码构成病毒颗粒结构的M、F和HN基因全部缺失,不仅会降低细胞毒性,还可完全避免二次颗粒的产生6)

另一方面,为推进将该载体应用于基因治疗和细胞重编程等领域,许多课题仍有待研究。例如,可在SeVdp载体搭载的基因结构有限,载体设计复杂,制造困难。此外,为了表达转录因子和各种受体,转录水平过高也是需要解决的问题。因此,从研发SeVdp载体的经验中吸取教训,我们着手研发更为通用的RNA载体,而研究的成果正是隐身型RNA载体(SRV)。

RNA病毒强烈诱导干扰素的原因之一在于病毒产生的RNA特性与动物细胞mRNA的特性显著不同,容易被识别为异物(病原体)。一般来说,RNA病毒的基因组RNA的GC含量较低,低于40%的不在少数。由于SeVdp载体的基因组RNA基本直接使用了天然存在的仙台病毒的遗传信息,其基因组RNA的GC含量约为46%,而人mRNA的GC含量约为60%。因为GC含量低的RNA会被细胞识别为异物8),所以我们决定通过优化密码子,使用人为增添过GC含量的RNA来重建载体。

曾有研究称在慢病毒等病毒载体中尝试了利用优化密码子来增加GC含量,但即使编码蛋白的一级结构相同,修饰后作为病毒的功能也会明显受损,因此认为病毒基因组RNA很难大规模地改变碱基序列。因此,笔者在研发SRV时,将非编码区替换为人mRNA来源的序列,同时仔细谨慎地对每个基因进行编码区优化,最终成功利用密码子优化了转录和复制所需的全部载体来源的基因。

此外,为需要搭载的基因设定了简易的规则,无论采用任何组合、顺序,都能以“转录盒”式连接法搭载至SRV中。上述改进的结果就是成功地制备出了在生理水平上表达基因的载体,同时可搭载的基因数量和大小多至10个(最长有14 kbp),大大超越了现有技术 , 可作为通用载体应用于各种目的9)

◆可优化iPS细胞制备的隐身型RNA载体概述

SRV™ iPSC载体由常磐生物株式会社研发、富士胶片和光纯药销售,为了优化iPS细胞的制备,已采用了各种方法对其进行改进。例如,为尽可能地提高制备效率,根据作为重编程材料的细胞种类来改变载体的基因表达水平的同时,在适用于重编程血细胞的载体(SRV™ iPSC-2、SRV™ iPSC-4)中进一步改进并搭载了载体自动消除用的SeVdp-302L序列。此外,除了含有标准重编程基因组合(OCT4、SOX2、KLF4、c-MYC)的4基因搭载型载体外,还设计了额外搭载有威斯康星大学的研究组曾报告过的NANOG和LIN28两种基因的6基因型载体,实现了超高效重编程。

隐身型RNA载体的研发及其在新一代细胞重编程技术中的应用

图1.SRV™ iPSC 载体的基因组结构

SRV ™ iPSC-2和SRV ™ iPSC-4具有响应miR-302后自动消除载体的系统。这种机制对于用血细胞生产iPS细胞非常有效。

此外,所有SRV ™ iPSC载体都带有发出绿色荧光的EGFP(增强型绿色荧光蛋白,Enhanced Green Fluorescent Protein)基因,作为基因表达的标志物,在重编程过程中可用荧光显微镜轻松监测基因表达(图2 )。

隐身型RNA载体的研发及其在新一代细胞重编程技术中的应用

图2. 使用SRV™ iPSC-2载体从外周血单细胞中构建iPS细胞

基因导入后第4天观察到EGFP荧光,证明该基因已被导入至几乎所有细胞中并已被表达。另一方面,在发生第一次传代前的第16天,已经出现了iPS细胞的集落,但几乎观察不到EGFP的荧光,由此可以确定载体已被自动消除。

根据以上改进,SRV™ iPSC载体实现了超越现有技术的重编程效率,即使是在Xeno-free、Feeder-free的严格要求下,也都能生产高质量的iPS细胞。特别是搭载有6因子的SRV ™ iPSC载体,对于需要高质量iPS细胞的再生医学来说是非常优秀的工具,并且针对自动制备iPS细胞等的应用仍在不断地改进。此外,只需改变搭载在SRV中的基因,即可兼容直接重编程(Direct reprogramming)、定向分化(Directed differentiation)等先进的细胞重编程技术,期待它能成为未来再生医学领域中被广泛使用的工具。

◆参考文献

 1)Davis, R. L. et al. : Cell51, 987 (1987). DOI: 10.1016/0092-8674(87)90585-x

 2)Takahashi, K. and Yamanaka, S. : Cell126, 663 (2006). DOI: 10.1016/j.cell.2006.07.024

 3)Yoshida, T. et al. : Virology92, 139 (1979). DOI: 10.1016/0042-6822(79)90220-4

 4)Yoshida, T. et al. : Virology120, 329 (1982). DOI: 10.1016/0042-6822(82)90034-4

 5)Nishimura, K. et al. : J. Biol. Chem., 282, 27383 (2007). DOI: 10.1074/jbc.M702028200

 6)Nishimura, K. et al. : J. Biol. Chem., 286, 4760 (2011). DOI: 10.1074/jbc.M110.183780

 7)Nishimura, K. et al. : Stem Cell Res., 23, 13 (2017). DOI: 10.1016/j.scr.2017.06.011

 8)Vabret, N. et al. : PLoS One7, e33502 (2012). DOI: 10.1371/journal.pone.0033502

 9)中西真人, 飯島実: 特許公報, 特許第6770224号

10)Yu, J. et al. : Science318, 1917 (2007). DOI: 10.1126/science.1151526

◆关键词

细胞重编程

血细胞和神经细胞都是由一个受精卵分裂且不可逆地分化细胞。由此,组成我们身体的细胞就具有了各种不同的功能和特性,一直以来人们都认为分化后的细胞其特性不会改变。然而MyoD基因的发现推翻了这一想法,揭示了分化细胞的特性可以人为改变。

 

持续感染

病毒与被感染的宿主细胞共存而不将宿主细胞杀死的一种感染状态。

 

诱导性多能干细胞(iPS细胞)

多能干细胞是指可分化成外胚层(皮肤和神经)、内胚层(消化道、肺、肝等)和中胚层(肌肉、血液等)的“多能性”细胞,在发现iPS细胞之前,更被人们熟知的是通过破坏人或动物发育过程中的胚胎而产生的胚胎干细胞(ES细胞)。然而ES细胞在破坏胚胎上存在伦理问题,若分化成ES细胞的细胞不使用免疫抑制剂就无法进行移植。另一方面,使用患者本人的细胞来制备iPS细胞,可在不发生免疫排斥的情况下进行移植,因此有望应用于再生医学。

点击此处查看相关产品:SRV™ Vector 系列


第六回 小胶质细胞-星形胶质细胞相互关联控制脑卒中


第六回 小胶质细胞-星形胶质细胞相互关联控制脑卒中

小胶质细胞研究的前沿  —从基础到临床—

第六回 小胶质细胞-星形胶质细胞相互关联控制脑卒中

山梨大学大学院 综合研究部 医学域 药理学讲座 小泉修一

第六回 小胶质细胞-星形胶质细胞相互关联控制脑卒中

◆前言

如今,胶质细胞在大脑功能中发挥的作用被不断地阐明。尤其是在各种大脑疾病中,胶质细胞的变化迅速、大且多样,因此研究人员认为这些胶质细胞的变化在大脑的异常和修复过程中可能发挥了重要的作用。这些假设逐渐被认可的同时,仍残留了许多课题。例如,胶质细胞研究在体外和体内实验的研究结果差异大,目前在体外实验获得的研究结果无法直接运用至体内实验研究。

此外,至今为止的大部分研究,都将各类胶质细胞分为小胶质细胞、星形胶质细胞、少突胶质细胞等分别进行研究,忽略了大脑功能受异源胶质细胞间交流结果的控制。当然,胶质细胞研究的历史和经验尚浅,先阐明各类胶质细胞的性质十分重要,而近期的研究以各类形式提出,胶质细胞可能作为集结者,通过异源胶质细胞间的协作控制大脑功能。

本文着眼于体内脑卒中模型中小胶质细胞-星形胶质细胞的关联,阐述其交流在控制大脑功能时发挥作用的重要性。

◆小胶质细胞-星形胶质细胞的关联

小胶质细胞对大脑内外环境的变化非常敏感,能够感知细微的变化,并先于大脑做出变化。例如,小胶质细胞在中年期就已活化并开始衰老1),而在肌萎缩侧索硬化等神经退行性疾病中,它们在发病前就已活化并与疾病的发病机制和难以治疗相关2)。虽然活化的小胶质细胞可以直接控制神经细胞的功能,但通过作用于星形胶质细胞能影响大脑功能。在外伤性脑损伤模型中,小胶质细胞首先感知到损伤并传达给星形胶质细胞,从而发挥保护作用3),另外感知到炎症的小胶质细胞通过传达信息给星形胶质细胞来控制神经细胞的功能4)

若先经历过非侵袭性缺血应激,在后来的侵袭性缺血时便可获得抗性,这种现象称为“缺血耐受性”,在实验和临床上比较常见(图A,B)。在短暂性大脑中动脉闭塞(MCAO)模型小鼠中,首先发生强烈变化的细胞是小胶质细胞,其次是星形胶质细胞5)。即使是不会造成显著伤害的非侵袭性MCAO(预处理,PC),灵敏的小胶质细胞仍会活化。

另外,非侵袭性MCAO以外的PC也能够诱导缺血耐受性,出现交叉缺血耐受性现象,但诱导交叉缺血耐受性的典型代表PC是革兰氏阴性细菌细胞壁成分的lipopolysaccharide(LPS,脂多糖)。LPS在中枢对小胶质细胞Toll样受体4的作用特别强,表明小胶质细胞对于缺血耐受性诱导来说至关重要。

这些小胶质细胞性缺血耐受性的诱导机制与Ⅰ型干扰素介导的通路密切相关,其他小胶质细胞依赖性神经胶质递质、细胞因子、神经营养因子等也非常重要。因此,小胶质细胞不仅能够直接作用于神经细胞,还通过作用于星形胶质细胞等其他类型的胶质细胞,间接诱导缺血耐受性的机制,近年有人提出了后者的重要性。

第六回 小胶质细胞-星形胶质细胞相互关联控制脑卒中

图. 通过胶质细胞交流获得缺血耐受性的机制

A. 侵袭性脑缺血导致的神经细胞严重损伤或死亡。

B. 经历非侵袭性缺血(PC)后,诱导其在侵袭性缺血时获得抗性的缺血耐受性。

C. PC类的轻度刺激由小胶质细胞先感知。小胶质细胞转化为活性小胶质细胞,直接参与缺血耐受性诱导,同时诱导星形胶质细胞活化(反应性星形胶质细胞)。反应性星形胶质细胞通过多种机制促进缺血耐受性的形成,特别是通过P2X7受体表达和P2X7受体依赖性HIF1α表达介导的神经保护机制,缺血耐受性持久且强效。

◆从小胶质细胞到星形胶质细胞的信号传递

感知到PC后的小胶质细胞如何把信号传达给星形胶质细胞呢?一般有多种DAMP,而ATP作为最初的信号尤为重要。ATP/P2受体信号的显著变化是脑卒中初期及LPS负荷小胶质细胞最初的应答变化。

感知到LPS后的小胶质细胞通过表达囊泡核苷酸转运蛋白(Vesicular nucleotide transporter),增强ATP的胞吐作用6)。感知到脑卒中后的小胶质细胞会表达一般情况下不表达的P2Y1受体,并结合ATP,使小胶质细胞自身的功能发生巨大变化7)。尤其是ATP,即使在脑卒中以外,在受到高度的兴奋性刺激时4),在外伤性脑损伤3)等的初期应答中,作为从小胶质细胞到星形胶质细胞的信号起着核心作用。小胶质细胞自身也有保护大脑的作用7),第一时间感知到更敏感的小胶质细胞信息,并将该信息传达给大脑保护功能更强大的星形胶质细胞,通过这种级联反应,发挥作为各脑部疾病安全装置的作用。

◆作为缺血耐受性执行细胞的星形胶质细胞

PC可使星形胶质细胞活化(反应性星形胶质细胞)。抑制该功能就会使缺血耐受性消失,因此可以说反应性星形胶质细胞是诱导缺血耐受性的必要条件。反应性星形胶质细胞是缺血耐受性诱导的执行细胞,其自身直接或通过与神经细胞和其他细胞的交流间接地在缺血耐受性诱导中发挥核心作用。

例如,反应性星形胶质细胞具有产生神经保护分子、增强兴奋性神经递质和去除有毒物质的功能、调节能量代谢等多种作用,特别是通过P2X7受体介导的作用更强5,8,9)。通过PC,反应性星形胶质细胞通过星形胶质细胞特异性大量(100倍以上)且长期(8周以上)地使P2X7受体的表达增强,并以受体依赖性诱导缺氧诱导因子1α(hypoxia inducible factor1α,HIF1α),发挥强烈的缺血抵抗性(图C)。

包括这种星形胶质细胞特异性的P2X7受体表达增强机制在内,缺血耐受性型星形胶质细胞的诱导机制还有很多尚不明确的地方。如上所述,由于小胶质细胞在PC诱导反应性星形胶质细胞之前活化,因此认为是小胶质细胞诱导了缺血耐受性型星形胶质细胞。然而这种推测是否正确,有关小胶质细胞诱导的星形胶质细胞表型多样性等相关问题,仍有许多不明之处,有待今后进一步研究。

此外,小胶质细胞如何感知非侵袭性的温和PC?又会产生怎样的表现型?小胶质细胞向星形胶质细胞和神经细胞传达的信号分别又是什么?等等一系列的问题尚待解决。但是,小胶质细胞-星形胶质细胞如同继电器一样传达大脑环境内的变化,并以此改变其在大脑中的应答性机制,被认为是各种脑部疾病发病前的常见现象。揭示了这是一种溢出效应较大的现象,期待未来的研究进展。

◆结语

本文以缺血耐受性为例,表明了小胶质细胞在控制神经胶质细胞脑功能方面的重要性。虽然小胶质细胞和星形胶质细胞均具有诱导缺血耐受性的潜力,但事实上小胶质细胞-星形胶质细胞关联的相互作用很可能发挥更重要的作用。随着各类胶质细胞的研究日渐活跃,预计未来异源细胞间相互作用控制神经细胞的观点也会越来越重要。

◆参考文献

1)Zhang, G. et al. : Nature497, 211 (2013). DOI: 10.1038/nature12143

2)Sanagi, T. et al. : J. Neurosci. Res., 88, 2736 (2010). DOI: 10.1002/jnr.22424

3)Shinozaki, Y. et al. : Cell Rep., 19, 1151 (2017). DOI: 10.1016/j.celrep.2017.04.047

4)Pascual, O. et al. : Proc. Natl. Acad. Sci. USA109, E197 (2012). DOI: 10.1073/pnas.1111098109

5)Hirayama, Y. et al. : J. Neurosci., 35, 3794 (2015). DOI: 10.1523/JNEUROSCI.4218-14.2015

6)Imura, Y. et al. : Glia61, 1320 (2013). DOI: 10.1002/glia.22517

7)Fukumoto, Y. et al. : J. Cereb. Blood Flow Metab., 39, 2144 (2019). doi: 10.1177/0271678X18805317

8)Hirayama, Y. and Koizumi, S. : Glia65, 523 (2017). DOI: 10.1002/glia.23109

9)Hirayama, Y. and Koizumi, S. : Neurosci. Res., 126, 53 (2018). DOI: 10.1016/j.neures.2017.11.013


   “小胶质细胞研究的前沿—从基础到临床—”系列:结语


九州大学大学院 药学研究院 药理学领域 津田诚   


   从和光纯药时报2020年第3期开始连载的“小胶质细胞研究的前沿-从基础到临床-”系列共6篇,最终以综述“小胶质细胞-星形胶质细胞连锁调控脑   

   中”作为完结篇。本系列对阿尔茨海默病、癫痫、脑梗塞、精神疾病、慢性疼痛等小胶质细胞发挥重要作用的疾病进行了探讨,以简明易懂的方式   

   介绍了其近期的新发现和前景,并毫无保留地讲述了小胶质细胞的魅力。衷心感谢引领世界小胶质细胞研究的各位老师们,在百忙之中为本系列文章

   执笔,同时由衷期待有朝一日能够阐明目前小胶质细胞研究结果尚无法克服的神经疾病的发病机制,并实现诊断和治疗方法的开发。


点击此处下载产品宣传页

点击此处查看相关产品详情:小胶质细胞标记物抗体——Anti Iba1抗体


WAKO 019-19741 小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit

特色

小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit

作用原理及概述:
钙离子作为信号转导通道中的信使,在所有细胞包括中枢神经细胞的生命活动中起重要作用。钙离子与不同的钙结合蛋白结合后进行级联反应。Iba1是能与巨噬细胞和小胶质细胞发生特异性结合的钙结合蛋白,当这些细胞激活后,Iba1的表达量上调,因此Iba1通常作为鉴定小胶质细胞的标记物使用。近来研究发现,小胶质细胞除了提供营养、保护神经的作用外,还被证明可产生NO、TNF- α、IL-1 β等物质,因此将小胶质细胞定义为中枢神经系统中的巨噬细胞样吞噬细胞,具有重要的免疫细胞作用。当病原菌,病毒入侵中枢神经系统时会起免疫监视的作用。近来研究发现,该细胞可能与神经退行性疾病的发生和发展有关。本产品是可与小胶质细胞发生特异性反应的兔多抗,配合对星形胶质细胞有特异性的GFAP单抗,可进行双染色。
抗原: 合成肽(Iba1 的C 末端序列)
外观: TBS 溶液(1mg/ml)
提纯: 抗原亲和提纯
特异性: 对小胶质细胞、巨噬细胞特异反应。不会与神经元、星形胶质细胞发生交叉反应。
能与人、小鼠、大鼠Iba1反应。
用法: ① Iba1抗体,兔源(Immunocytochemistry 用)适合Immunocytochemistry。
只需1 ~ 2 μg/ml即可进行实验。
② Iba1抗体,兔源(Western blotting 用)适合Western blotting。
只需0.5 ~ 1μg/ml即可进行实验。
l 兔源细胞的双染色及同视野的相差显微镜图

绿色:Iba1抗体,兔源(Immunocytochemistry 用)(小胶质细胞)
红色:抗GFAP 抗体(星形胶质细胞)

Western blotting

Lane1:Iba1 20ng
Lane2:Rat Microglia(10μg)
Lane3:Rat Neuron(10μg)
Lane4:Rat Adult Brain(10μg)
一抗: Iba1抗体,兔源(Western blotting 用)(0.5μg/ml)
二抗: HRP 标记抗兔IgG
检测方法: 化学发光法 WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741
货号 品名 用途 规格 备注
019-19741 抗 Iba1,小兔(Immunocytochemistry用) 免疫化学 50μg 来电咨询
016-20001 抗 Iba1,小兔(Western blotting用) 免疫化学 50μg 来电咨询
WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741

WAKO小胶质细胞/巨噬细胞特异性抗体Anti Iba1, Rabbit 019-19741

球体·类器官共培养的范式转移


球体·类器官共培养的范式转移

球体·类器官共培养的范式转移




Ginreilab Inc. 岛崎猛夫

◆前言

细胞培养方法种类繁多,例如,在培养皿上培养细胞,并集中分析同种细胞的单层静置培养法;通过搅拌培养基使细胞保持在悬浮状态进行培养的悬浮培养法;使用凝胶状基质进行培养的培养法等等。这些培养技术犹存已久,1962年,Boyden等人开发了细胞迁移分析法1),后被用于通过被称为细胞培养插件的培养基进行非接触式共培养法。1971年,立体培养细胞群开始有了“球体”2)的说法。

球体是指细胞通过相互粘附形成的简单集合体,并构建成三维结构的状态。顾名思义,「球(sphere)+oid」即指球状物体。一般而言,细胞会通过支架粘附于容器,若没有支架,或支架较弱时,就会相互粘附形成三维立体的结构。球体培养制备正是利用这一特点,不制作支架的方法。例如,使用非粘附性容器的制备方法;通过工学的微细加工技术使用结构体的方法;一边旋转培养器一边进行培养的旋转培养法;在液滴中进行立体构建的悬滴法等等3)

关于进行共培养或球体培养的理由,若能让细胞与细胞间进行直接或是间接交流(相互作用),就能阐明细胞是否发挥了单个细胞无法发挥的功能。

球体与下述的类器官,虽然经常使用相同意思来表达,但球体的功能性并不如类器官发达,严格来说,两者间有着明显的区别。

类器官「器官(organ)+oid」,即指类似于器官的物体。一般而言,它指三维培养干细胞所得的组织。最近,由干细胞分化而成的不同种类的分化细胞,以及原分化细胞混合制备而成的立体细胞群也被称为类器官。因此,无论原始细胞是否皆为干细胞,均可广义地描述为“利用细胞技术人为制造与器官类似的组织”。生物学上类器官是指 “使用干细胞或有助于器官形成的前体细胞等,通过药物和环境构建等方法人为模拟胚胎学中的生物学过程,具有自律性形成的器官样集合体”。各项研究表明,类器官可详细再现人类器官的结构和生理功能,能够用于阐明病理和药物开发。为顺应临床测试周期的缩减以及动物实验替代的趋势,类器官的研究盛行。以生物学研究为基础,结合被称为organ-on-a-chip的工学技术进行培养和分析的研究盛行,总称为仿生系统(microphysiological systems:MPS)。美国环境部提出2025年将动物实验减少30%,2035年完全消除动物实验的计划。2023年1月6日,美国FDA颁布了临床试验前无需进行动物实验,可采用使用细胞技术实验结果的法案4)。虽然颁布的法案与预期相符,但依然让人震惊。某种意义上,两者间的关系正如“动物实验=汽油车”,“细胞技术和类器官=电动车”。换言之,未来使用细胞技术的新药研究将会成为主流,球体培养、Organ-on-a-chip 、MPS技术则会成为范式转移的关键技术。

为使水平链接细胞共培养板UniWells5向Organ-on-a-chip/MPS系统进化,我们进行了开发。作为初级阶段的技术介绍,笔者将介绍水平方向连接的优点,以及运用其优点进行的球体和类器官的共培养。

1)UniWells水平方向连接的优点

作为共培养容器被广泛使用的插入式细胞培养板,原本是Boyden等人为了检测细胞移动能与浸润能而开发,被称为Boyden chamber1。其结构为两个桶状容器交叠,上侧的容器底面为滤膜。向下侧容器中的培养基中加入细胞引诱剂,并通过计数在滤膜上方培养的细胞穿透滤膜的孔移动到下方的细胞来检测浸润度。因为该容器可直接用于细胞共培养,后来也被长期使用。

       由于Boyden chamber是为了检测细胞的浸润以及移动能而开发,所以接种的细胞数量较少。细胞数量少的话,部分滤膜孔就不会被细胞堵塞,就可上下共用培养基。而细胞数多的话,就会堵塞滤膜孔,降低或停止共用培养基。然而,这一显而易见的事实并未受到太多关注,插入式细胞培养板仍成为了共培养的标准容器。并不是细胞数量少就无法共培养,但因为无法直接观察上侧容器中的细胞,所以一不留神细胞可能就会融合(细胞面积占有率高)。这时,就会在没有意识到这并不是共培养的情况下,进行结果分析。实际上,只要分析电子显微镜照片的结果就可进行确认(图1)。

球体·类器官共培养的范式转移

图1. 滤膜部分的电子显微镜图像

在UniWells中,由于细胞与过滤孔的位置相隔较远,即使细胞数量多也不会堵塞过滤孔。

2)关于三维共培养

MPS的目标是模拟人体。人体的各个器官处在不同的位置,无需直接接触,通过血液与组织液进行信息以及物质的双向交换,或是单向作用。为了模拟这些,需要迷你器官之间不经过直接接触就能够进行物质交换和影响的构造,以及共培养和单向作用的构造。此外,由于MPS为实验,所以还需评估实验误差。换言之,需要将类器官间的共培养和单向培养、多个类器官同时评估技术纳入重要技术。

在MPS中,已开发大量采用微通道技术的系统,而UniWells™ 采用的滤膜,就是通道长度非常短的微通道集合体。另外,通过上述的滤膜位置关系,UniWells™ 具有不堵塞通道,进行细胞和球体/类器官培养的优势。为了进一步优化UniWells,敝公司目前正致力于将其球体、类器官和MPS化。作为优化第一弹,于2023年发售可安装在UniWells上使用的PDMS制适配器UniWells-Cups(暂定名)。该产品利用了微加工技术和PDMS制造技术,与住友理工株式会社共同开发的UniWells 任选产品。可使用UniWells™ 共培养多个球体或类器官,还能进行各种组织学的评估。众所周知,球体和类器官各不相同。该系统可以同时共培养多个球体和类器官,因此可以在相同的实验条件和染色条件下同时评估球体阵列。

球体·类器官共培养的范式转移

图2. UniWells-Cups:Ginreilab Inc.和住友理工株式会社共同开发的产品

作为优化第二弹,预计今后将推出MPS设配器。

◆参考文献

1. Boyden, S. et al. : J. Exp. Med., 115 (3), 453 (1962).

2. Sutherland, R.M. et al. : J. Natl. Cancer. Inst., 46, 113 (1971).

3. Jubelin, C. et al. : Cell. Biosci., 12, 155 (2022).

4. The FDA Modernization Act 2.0. Available onlineより
4.
https://www.congress.gov/bill/117th-congress/senate-bill/5002 (2023年1月29日).

5. Shimasaki, T. et al. : Micromachines (Basel), 12 (11), 1431 (2021)

◆产品列表

产品编号

产品名称

用途

包装

384-14421

UniWells™ 水平共培养板

培养容器(材质:聚苯乙烯)

10 set

381-14431

UniWells™ 滤膜0.03 μm

专用滤膜(孔径0.03 μm)

50片

388-14441

UniWells™ 滤膜0.6 μm

专用滤膜(孔径0.6 μm)

50片

388-17001

UniWells™ 共培养板适配器96

96孔板尺寸支架

可放置8个 UniWells™培养板

1个

点击此处查看相关产品:水平连接细胞共培养板UniWells™

Millipore手持式细胞计数器 传感器 实验室耗材PHCC40050

Millipore手持式细胞计数器 传感器 实验室耗材

简要描述:

Millipore手持式细胞计数器 传感器,Sescriptionscepter电池计数器传感器,40μm-qty:50。

目录编号PHCC40050

商品名称

权杖

Sescriptionscepter电池计数器传感器,40μm-qty:50

OverviewSkepter传感器设计有一个微型制造的细胞传感区,能够通过细胞大小和细胞体积进行区分,分辨率可达亚微米和亚微米。

结合精密的液体处理通道和电子设备,权杖传感器准确可靠地提供细胞数量统计数据

应用程序

应用40um的权杖传感器用于在权杖2.0细胞计数器上计数6微米至36微米之间的颗粒。包括50个细胞计数器传感器。

关键应用

细胞计数

生物信息

采样容量50μL

物化信息

操作范围:10,000个颗粒/毫升-500,000个颗粒/毫升

尺寸

粒径6微米-36微米

电池尺寸范围为8.0-25.0μm

Millipore手持式细胞计数器 传感器

包装信息

材料尺寸50/pk