

2500, Parc-Technologique Blvd Quebec City (Quebec) G1P 4S6 CANADA

Tel.: 1 418 874.0054 Fax: 1 418 874.0355 Toll Free.: 1 877 745.4292 (North America Only)

Silia*MetS*[®] Specification Sheet

Silia*MetS®* TAAcONa

Product number: R69230B Particle size: 40-63 μm Pore diameter: 60 Å Particle shape: Irregular Silica Gel

Product description

Silia*MetS* TAAcONa (or *SiliaMetS Triaminetetraacetate, sodium salt*) is a silica bound metal scavenger for Pd(II), Ni(II) and Cu. It is the supported version of EDTA in its sodium salt form. It is an effective scavenger for metals in higher oxidation state, 2+ or higher.

It is an excellent scavenger for Ca, Cd, Cs, Cu, Fe, Ir, La, Li, Mg, Ni, Os, Rh, Sc & Sn. It is also effective for Cr, Pd, Ru, Se & Zn.

Properties	Specifications	Analysis methods
Particle size distibution (%) (Under 40 μm / Over 63 μm)	≤5/≤5	Sieving
Specific surface area (m^2/g)	480 - 550	Brunauer, Emmett and Teller (<i>BET</i>) Analysis
Pore diameter (Å)	55 - 65	
Pore volume (<i>mL/g</i>)	0.70 - 0.85	

Test report

Properties	Specifications	Analysis methods
Nitrogen Content (N %)	≥ 1.70	Elemental analysis
Volatile Content (%, 110°C)	≤ 5.00	Humidity measurement
Color	Off-white	Visual test

Physical properties

Properties	Specifications	Analysis methods
Molecular loading (<i>mmol/g</i>)	≥0.41	Based on nitrogen content
Nitrogen loading (mmol/g)	≥ 1.23	Based on nitrogen content
Surface coverage (µmol/m ²)	≥ 0.97	Based on the loading
Endcapping	No	-
Solvent compatibility	All solvents, aqueous and organic	-

Storage conditions and shelf-life

Prolonged storage	Shelf- life
Keep dry	2 years

Recommended conditions for this product are to keep it dry in a tightly closed container.

Silia*MetS*[®] Experimental Procedures

Screening in Batch Reactor Mode (*Bulk*)

To select the best scavenger for initial screening experiments, do the following steps for each Silia*MetS* Metal Scavengers included in the kit. Use 4-8 molar equivalents of each Silia*MetS* in respect to the residual metal concentration.

- 1. Dissolve the crude product to be treated in a suitable solvent (*or use directly the crude reaction mixture*) and prepare vials containing the same solution volume.
- 2. Directly, add each Silia*MetS* included in the kit to these vials.

Note: no pre-wetting of the SiliaMetS is required. See "Determing the Optimal Amount of SiliaMetS to use" on page 96, of the SiliCycle Catalog for the Pharmaceutical Industry.

- 3. For initial tests, stir the solution for at least one hour at room temperature.
- 4. Scavenging progress can be followed by normal analytical techniques. The scavenging progress can be estimated by looking at the color of the solution. When the scavenging is almost complete, the solution is less colored and Silia*MetS* becomes colored. In some occasional cases, if all the samples are still coloured, try one or all of the following: let them react for a longer period of time; add more equivalents of the Silia*MetS*, increase the temperature of the reaction.
- 5. At the end of the scavenging, filter off the Silia*MetS* using a fritted funnel or filtration device.
- 6. Wash the Silia*MetS* with additional solvent for total recovery of the API (*or compound of interest*) and concentrate the solution under vacuum.
- 7. Analyze the residual metal concentration of each vial to identify the most efficient Silia*MetS* Metal Scavenger.

Note: you can choose more than one scavenger.

 If you are satisfied with the scavenging efficiency of the best Silia*MetS*, direct scale-up is possible. Otherwise, scavenging optimization can be done with Silia*MetS* identified in #7 (see next section).

Experiment Optimization

If, upon completion of the screening procedure, the scavenging is not complete or you wish to either reduce the number of equivalents or the reaction time, optimization steps can be undertaken.

Various parameters can be changed, one at a time or simultaneously, to improve the metal removal efficiency.

Note: you can mix multiple SiliaMetS to get superior efficiency.

Number of Silia*MetS*® Equivalents

For initial screening experiments we suggest that 4-8 molar equivalents be used, in respect to the residual metal concentration of each Silia*MetS*. Once the preferred scavenger is identified, further optimization can be done to reduce the number of equivalents used (*typically down to 2-4 equivalents*).

Subsequent Treatments

In some cases (*equilibrium process or the presence of multiple species*), multiple treatments with Silia*MetS* is suitable instead of a single treatment with a larger amount.

For optimal results, filtration between each treatment can allow a higher scavenging efficiency.

Reaction Time

In some cases, where increasing the temperature is impossible, longer contact time with the scavenger can allow a higher scavenging efficiency.

Conditions: Pd(OAc)₂, THF, SiliaMetS Thiol, RT.

Temperature

In the initial screening, we suggest the scavenging experiments be run at room temperature. Usually, metal scavenging is completed after one hour or so. However, when shorter scavenging times are required, higher scavenging rates can be achieved by increasing the temperature. Silia*MetS* can be safely used at elevated temperature without degradation and can be added either at room temperature or directly to a warm solution.

Solvent

SiliaMetS can safely be used in a wide range of organic and aqueous solvents commonly used in laboratory and in process, such as DMF, DMSO, THF, 2-butanone, alcohols, ethers, chlorinated solvent, etc.

Mixing Rate

Silia*MetS* are mechanically stable and offer excellent scavenging efficiency in batch processes agitated by overhead and magnetic stirrers, as well as orbital shaking under low to moderate agitation rates.

If required, mixing rates can be increased to get better scavenging results. With faster stirring, you improve Silia*MetS* dispersion in solution.

SiliCycle Inc.

Worldwide Headquarters 2500, Parc-Technologique Blvd Quebec City (Quebec) G1P 4S6 CANADA Tel.: 1 418 874.0054 Toll Free: 1 877 745.4292 (*North America only*) Fax: 1 418 874.0355 www.SiliCycle.com info@SiliCycle.com

SiliCycle Europe European Office

europe@SiliCycle.com

SiliCycle Shanghai

Chinese Office china@SiliCycle.com

SiliCycle India Indian Office india@SiliCycle.com